Skills from previous math classes that you need to self-review for Math 1A

From Algebra:

Numeracy

What is $0 \div 1 ? 1 \div 0 ? 0 \div 0 ?$

What happens when you add/subtract/multiply/divide a number very close to 0 and a number very close to 0?

What happens when you add/subtract/multiply/divide a number very close to 1 and a number very close to 0?

What happens when you add/subtract/multiply/divide a number very close to 0 and a very large number?

What happens when you add/subtract/multiply/divide a very large number and another very large number?

Equations of lines (slope-point form)

Absolute value inequalities

Quadratic functions

Graphing

Factoring

Ouadratic formula

Completing the square

Negative and fractional exponents

Radical expressions

Rationalizing denominators

Rational expressions

Add / subtract

Polynomial long division

Simplifying complex fractions (quotients involving quotients)

Asymptotes of rational functions

From Geometry:

Areas

Triangles / circles / sectors

Similarity

From Trigonometry:

Sine / cosine / tangent of special angles on unit circle

Inverse sine / cosine / tangent of special values

Pythagorean / reciprocal / quotient / negative angle / co-function identities

Sum & difference of angles identities

Trigonometric equations

From Precalculus:

Graphs of basic functions (domain, range, intercepts, asymptotes, long run behavior)

Power $y = x^n$ (n could be positive or negative, even or odd or reciprocal of integer)

Exponential $y = b^x$ (b could be greater than or less than 1)

Logarithmic $y = \log_b x$ (b could be greater than or less than 1)

Trigonometric $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \csc x$, $y = \sec x$ or $y = \cot x$

Inverse trigonometric $y = \sin^{-1} x$, $y = \cos^{-1} x$ or $y = \tan^{-1} x$

Piecewise functions

Graphing

Piecewise definition of absolute value

Graphs of basic conics

Circles / ellipses / parabolas

Single step transformations of functions & graphs (relationship between algebraic & graphical transformations)

Horizontal / vertical

Shift / reflect / stretch & compress

Symmetry of functions & graphs (relationship between algebraic & graphical symmetry)

Even / odd

Polynomial inequalities

Unless stated otherwise, you must be able to solve these

without your calculator

[1] Fill in the blanks. The answer is either a number, "undefined", "cannot be determined without more information":

$$\frac{1}{0}$$
 =

$$\frac{0}{1}$$
 =

$$\frac{0}{0} =$$

Let a, b be positive real numbers that are very close to 0. Let A, B be positive real numbers that are very large. [2] Describe the size of the following expressions.

The answer is either "very close to 0", "very close to 1", "very large" or "cannot be determined without more information".

[i]
$$a+b$$

[ii]
$$a-b$$

[iii]
$$a \times b$$

[iv]
$$\frac{a}{b}$$

$$[v]$$
 $A+B$

[vi]
$$A - B$$

[vii]
$$A \times B$$

[i]
$$a+b$$
 [ii] $a-b$ [iii] $a \times b$ [iv] $\frac{a}{b}$ [v] $A+B$ [vi] $A-B$ [vii] $A \times B$ [viii] $\frac{A}{B}$ [ix] $a+A$ [x] $a-A$ [xi] $A-a$ [xii] $a \times A$ [xiii] $\frac{a}{A}$ [xiv] $\frac{A}{a}$

[ix]
$$a + A$$

$$[x]$$
 $a-A$

[xi]
$$A - a$$

[xii]
$$a \times A$$

[xiii]
$$\frac{a}{4}$$

[xiv]
$$\frac{A}{a}$$

[xv]
$$\frac{1}{a}$$
 [xvi] $\frac{1}{A}$

- Find the slope-point form of the equation of the line through the points (-1, -3) and (-6, 4). [3]
- Sketch $f(x) = x^2 6x 16$ by finding the x and y intercepts and the vertex (without any additional points). [4]
- Solve $3x^2 2x = 9$. [5]
- Complete the square for $-2x^2 + 24x 3$. NOTE: This does NOT involve solving an equation. [6]
- Fill in the blanks. Write your answer without using exponents and without using radicals. [7]

$$16^{\frac{1}{2}} =$$

$$8^{-3} =$$

$$\left(\frac{27}{8}\right)^{\frac{1}{3}} = \left(\frac{4}{9}\right)^{-2} =$$

$$\left(\frac{4}{9}\right)^{-2}$$

$$64^{-\frac{2}{3}} =$$

- Simplify $\frac{x^3\sqrt{12x}}{3x^{-2}}$ by writing it in the form ax^n . [8]
- Simplify $\frac{8}{\sqrt{2} + \sqrt{5}}$ by rationalizing the denominator. [9]
- Add and simplify $\frac{x-7}{x^2-4x+3} + \frac{x+7}{x^2-x-6}$ [10]
- Rewrite $(2x^3 6x^2 3x + 7) \div (x^2 2x + 3)$ using polynomial long division. [11]
- If $f(x) = \frac{1}{1-2x}$, simplify $\frac{f(x+h)-f(x)}{h}$. [12]
- Find all vertical asymptotes for the function $f(x) = \frac{x^2 4}{x^2 x 12}$. [13]
- Find the area of the triangle PQR on the right. [14]
- [15] Find the area of the sector on the right with the given radius and central angle (in radians).

$$e^0 =$$

$$ln 0 =$$

$$e^1 =$$

$$\ln \sqrt{e} =$$

$$\ln \sqrt{e} = \qquad \qquad \ln \frac{1}{e^3} =$$

Fill in the following table with all entries (in radians) that have exact values. Also, identify the entries which do not exist. [17]

x =	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{2}}{2}$	$-\sqrt{3}$	$-\frac{1}{2}$	-1	0	1	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{2}$
$\tan^{-1} x =$													
$\cos^{-1} x =$													
$\sin^{-1} x =$													

- [18] State the following trigonometric identities.
 - the 3 Pythagorean identities that involve the 6 trigonometric functions [a]
 - the co-function identities for each of the 6 trigonometric functions [b]
 - the double angle identities for $\cos 2x$ (3 versions) and $\sin 2x$ [c]
- [19] Simplify $\sin(x-\pi)$.
- Simplify $\cos(2\pi x)$. [20]
- Find all solutions of $1 + 3\sin x = 0$, where $0 \le x \le 2\pi$. [You will need to use your calculator.] [21]
- Find all solutions of $\cos 2x = -\frac{\sqrt{3}}{2}$. [22]
- Sketch the general shape and position of the following graphs. Do not worry about specific x and y coordinates. [23]

$$y = x^5$$

$$y = x^{-4}$$

$$v = x^{\frac{1}{3}}$$

$$y = e^x$$

$$y = 0.5^{x}$$

$$y = \ln x$$

$$y = \log_{0.4} x$$

$$y = \cos x$$

$$y = \tan x$$

$$y = \csc x$$

$$y = \sin^{-1} x$$

$$y = \cos^{-1} x$$

$$y = \tan^{-1} x$$

$$x^2 + v^2 = 9$$

$$4x^2 + 9y^2 = 144$$

The graph of f(x) is shown on the right. Sketch the following graphs. [24]

$$y = f(x) - 2$$

$$y = f(x+2)$$

$$y = f(2x)$$

$$y = 2f(x)$$

$$y = f(-x)$$

$$y = -f(x)$$

[25] Sketch the function
$$f(x) = \begin{cases} 2x-3, & x < -1 \\ 1-x^2, & x \ge -1 \end{cases}$$

[26] Determine algebraically if $f(x) = x\sqrt{1+x^2}$ is symmetric about the y-axis, about the origin or neither.

[27] Determine algebraically if $f(x) = \sin x - \cos x$ is even, odd or neither.

[28] Solve the inequality $x^3 + 2x < 3x^2$.